
Project Plan

Senior Design I
Project Title Interactive evaluation of shortest path methods

Client & Advisor Goce Trajcevski, Mengxuan Zhang

Team sddec23-14

Team Members Alex Blomquist, Samuel Caldwell, Selma Saric, Yadiel Johnson

1 Project Management & Tracking Procedures

The chosen methodology for this project was Agile due to some advantages that it has over the

Waterfall method. Namely, the flexibility to adjust our priorities throughout the course of the project

would fit better with the Senior Design course layout, and it allows for the client to have a higher

influence throughout the project’s development. The agile methodology provides various tools to

enable this via providing a clearer understanding of the progress of the project as well as keeping team

members updated on each other’s work to identify potential roadblocks or issues during development.

The tools in the agile methodology we use can be found below:

• Every Tuesday involves a breakdown of current and upcoming assignments and goals. These get

broken down into tasks that are submitted to our team’s Trello board.

• The team maintains communication via Discord, where general discussion takes place. Team

meetings are also held over voice channels.

• The team has access to a GitLab instance for the code’s version control. It is reserved for the

implementation phase of the project.

• Retrospectives after each sprint where the team and its members can reflect on their

performance and identify areas of potential improvement.

2 Task Decomposition

Our team elected to showcase the project’s task decomposition in two ways; a project conceptualization

and a tabular rundown of the decomposition.

2.1 Project Conceptualization
In this section we present the team’s derivation of what parts of the project need to be implemented to

achieve the desired outcome. The approach that the team settled on was a Model-View-Controller

design that leverages RESTful logic, and a further specification on the server side regarding an algorithm

execution driver.

2.1.1 Backend
This section contains the preliminary design of the server-side components.

• Obtain and adapt implementations of the various shortest path algorithms as described in our

Taxonomy document.

o Modify algorithm implementations such that all I/O operations are standardized.

• Develop a “driver” that receives a dataset and a requested algorithm to run against it.

• Develop a server component that manages transactions with the web application and the

algorithm driver.

o Develop the “Controller” portion of the MVC pattern to communicate with the web

application via a RESTful API.

o Integrate with the driver to coordinate multiple algorithm executions.

o Implement methods to receive, validate, and manage datasets submitted by users.

2.1.2 Frontend
This section contains the preliminary design of the client-side components.

• Create wireframes for the entirety of the web application to conceptualize its user interface.

• Create UI for the web app using HTML, CSS, and JavaScript

o Develop a way for users to upload data sets.

o Develop a way for the users to select algorithm(s) to run on their data sets.

o Develop shortest-path algorithm visualizations.

o Present algorithm runtime and metrics on the results screen.

o Develop a method to generate reports that have comparisons between algorithms,

including a method to store them.

2.2 Tabular Rundown
Below is tabular rundown of all major tasks that must be completed is presented further below. These

tasks are necessary for the successful completion of this project. Note that the corresponding sprints

that illustrate the agile methodology that the team has chosen is available in the Gantt chart below.

Description

1 Design the System Architecture

1.1 Design the server component

1.2 Design the driver component

1.3 Design the web app component

1.4 Adjust and adapt the algorithm-dataset suite

2 Design the System Framework

2.1 Design a standardized format for algorithm I/O

2.2 Design the REST endpoints

3 Design Testing Framework

4 Finalize Design Document

5 Prepare Server Environment

6 Implement Server Component

6.1 Add REST endpoints

6.2 Implement persistence

7 Implement Driver Component

7.1 Implement algorithm interface solution

7.2 Add “runtime and space complexity” metric gathering

8 Implement Web App Component

8.1 Implement basic UI

8.2 Add REST logic

8.3 Add user form submission

8.4 Implement algorithm output visualization

8.5 Add “comparison export” functionality

9 Implement Testing Suite

10 Final Presentation

3 Project Milestones, Metrics, and Evaluation Criteria

A detailed listing of the milestones for this project can be found below.

Milestone Title Milestone Description Metrics:

1
Finalize System

Architecture Design

Working with the use-case diagram finalize a
diagram that showcases how the frontend, driver,
and backend of the system work together.

April 2nd

2 Finalize Design Document
Finalize the design document to work as an
exhaustive summary of the details of the software’s
development.

April 23rd

3
Acquire and Adapt
Algorithm Code

Receive and analyze code provided by the project
advisor in order to utilize it with the AED.

Sept. 10th

4
Develop the User
Interface

Integrate the initial design of the UI into the
frontend of the system architecture.

Nov. 11th

5
Develop Algorithm
Execution Driver

Develop a module tasked with managing algorithm
executions, runtime metrics, and related
responsibilities.

Oct. 1st

6
Develop the Server
Component

Implement the environment and server where all
web application requests will be handled, including
algorithm executions and persistence.

Sept. 17th

7 Unit Testing
Ensure the functionality of each component by
testing its functionality for potential software bugs
during their operation.

Oct. 17th

8
Implement Algorithm
Visualization

Include visualizations of algorithm results and
traversal paths on the web app results screen.

Nov. 1st

9
Integration and
Acceptance Testing

Test each component for their compatibility during
interactions to detect any potential bugs or other
potential system vulnerabilities during integration.

Nov. 17th

10 Final Software Release
Prepare the finalized version of the software
system for presentation, with added emphasis on
quality assessment.

Dec. 3rd

11
Final Presentation to
Panel

Present the finalized version of our presentation
with a demonstration of the software developed
that showcases its functionality.

Dec. 8th

4 Project Timeline

The project schedule is presented below, divided into two semesters for readability, as devised by the team’s project manager.

4.1 Project Schedule, Semester 1

Figure 4.1: Gantt Chart for First Semester of Senior Design

4.2 Project Schedule, Semester 2

Figure 4.2: Gantt Chart for Second Semester of Senior Design

5 Risks, Management & Mitigation

Risks associated with the project can be found below.

Title
%
Risk

Reason Mitigation Strategy

1 Design System Architecture 0.3 Planning Stage N/A

2 Design System Framework 0.3 Planning Stage N/A

3 Design Testing Framework 0.2 Initialization Stage N/A

4 Prepare Server Environment 0.2 Initialization Stage N/A

5 Finalize Design Document 0.3 Documentation N/A

6 Implement Server Component 0.2
Implementation
Failure

N/A

7 Implement Driver Component 0.5
Implementation
Failure

Test algorithm implementation
to make sure they produce the
expected results.

8 Implement Web App Component 0.4
Implementation
Failure

N/A

9 Implement Testing 0.3 Testing Failure N/A

10 Final Presentation 0.4 Documentation N/A

6 Personnel Effort Requirements

Title Hours Explanation

1 Design System Architecture 30
The server, driver, and web app components will
provide the foundations for the application to
work.

2 Design System Framework 30
Design the applications functions which will

interact with the

3 Design Testing Framework 40
Create a test suite for verifying the application
works as intended.

4 Prepare Server Environment 40

5 Finalize Design Document 20
Complete documentation describing the
application’s design in its entirety.

6 Implement Server Component 50
Implement a backend housing the algorithms
utilizing a Java backend to interface with the
driver component.

7 Implement Driver Component 50
Implement the algorithm functions and ensure
they produce the expected results.

8 Implement Web App Component 50
This will involve implementing the UI and user
functions to allow them to utilize the algorithms
and data sets. It will also need to retrieve the

metric gatherings and present them back to the
user.

9 Implement Testing 40
Final round of testing all functionalities of the
application.

10 Final Presentation 100

It will be necessary to develop a concluding
presentation that will highlight our project’s
functionality along with its associated design
methodology.

7 Other Resource Requirements

In unison with the client, only two other extraneous requirements were identified:

• Throughout the second semester, we may request a server from ETG since we need a server

capable of handling multiple algorithm executions on large data sets.

• We do not expect to have any financial constraints for our project.

